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Abstract. After reviewing three classical samplingmethods for implicit objects, we describe a new
sampling method that is not based on scanning the ambient space. In this method, samples are
\randomly" generated using physically-based particle systems.

Introduction

In computer graphics, an object is described either
by a set of sample points or by an analytic scheme
that uses mathematical equations to de�ne its geom-
etry and topology. Descriptions based on samples
occur in areas such as medical images and terrain
models. Analytical descriptions are usually found in
applications of geometric modeling, such computer-
aided design and manufacture.

When an object is described by samples, a re-
construction scheme is needed to recover its geom-
etry and topology from the samples. This problem,
called structuring, consists of providing a combina-
torial structure to the samples in order to (ideally)
recover the exact topology of the object and an ap-
proximation of its geometry.

When the object is described analytically, we must
�nd a �nite, discrete representation of its geometry
and topology so that the object can be represented
in the computer. Usually, this is accomplished by
sampling points on the object. Again, these samples
must be structured to provide an exact reconstruc-
tion of the topology and a robust approximation of
its geometry.

A typical example of this process is the polygo-
nization of objects usually found in geometric mod-
eling software. These polygonal approximations are
discrete representations of geometric objects inside
computers. Such approximations are useful in prac-
tice not only for solving numerical problems, such as
partial di�erential equations arising in engineering,
but also for rendering, because many graphics sys-
tems have special hardware for handling polygons.

Therefore, the computation of polygonal approxi-
mations of geometric objects de�ned analytically can
be conceptually divided into two phases: sampling,
which is the computation of points on the object, and
structuring, which is the creation of a data structure
representing a polygonal approximation interpolat-
ing these points (Fig. 1).

Figure 1: A sample of points on a torus.

The way these sub-problems are solved depends
on how geometric objects are de�ned: the two
most common ways of de�ning geometric objects|
parametrically and implicitly|require very di�erent
methods for sampling and structuring. In this paper,
we discuss methods for sampling implicit objects.

Sampling parametric objects is easy because it re-
duces to sampling the parameter domain; this is usu-
ally performed on a mesh so that structuring is im-
mediate. Therefore, constructing polygonal approx-
imations for parametric objects is easy not only be-
cause it is easy to generate points on them, but also
because it is easy to structure mesh samples: they
have a priori structure. On the other hand, con-
structing polygonal approximations for objects de-
�ned implicitly is hard because both sampling and
structuring are hard: sampling conceptually requires
the solution of many non-linear equations; structur-
ing is di�cult because there is no guiding mesh.

Classical methods for computing polygonal ap-
proximations for implicit objects combine sampling
and structuring (see below). In this article, we study
sampling as a problem independent from structur-
ing. This separation aims to identify the problems
that are particular to each phase. When structuring
is done concurrently with sampling, these problems
tend to lose their original source and merge into a
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set of problems that is characteristic of the combined
method used.

We start by reviewing the sampling technique of
three classical polygonization methods for implicit
objects. We then describe in detail and discuss a
new approach to sampling that uses physically-based
particle systems.

Sampling implicit objects

Let h:Rn ! R be a di�erentiable real function de�n-
ing an implicit object V = h�1(0). For n = 2, the
object V is a curve; for n = 3, it is a surface; in
general, V is a manifold of co-dimension 1, i.e., of
dimension n� 1.

Sampling points on V means �nding solutions of
the equation h(x) = 0. In practice, sampling means
�nding enough solutions so that the topology of V
can be reconstructed and the geometry can be ap-
proximated. In this sense, sampling implicit objects
conceptually requires the solution of many non-linear
equations.

A sampling method can impose a structure that
does not correspond to the geometry of the object
being sampled. For instance, sampling an object by
slices, as done in computer-aided tomography, im-
pose a sweep structure on the object; accordingly,
reconstructing a solid from a series of slices is a dif-
�cult problem (Fig. 2).

Classical polygonization methods for implicit ob-
jects perform structuring concurrently with sam-
pling. As mentioned before, we prefer to study sam-
pling and structuring separately. In this section,
we review the sampling technique of three classical
methods: ray-casting, continuation, and enumera-
tion.

Sampling by ray-casting

A naive way of �nding solutions of the equation
h(x1; : : : ; xn) = 0 is to reduce it to single-variable
equations by computing the intersection of V with a
family R of straight lines, which we call rays.

The simplest rays correspond to �xing some of the
variables. For instance, we can �x the �rst n � 1
variables and solve h(a; t) = 0 for a sample of points
a = (a1; : : : ; an�1) inR

n�1. In other words, we com-
pute the intersection of V with the \vertical" rays
fag � R; accordingly, we call this method vertical

ray-casting (Fig. 2).

Sampling by ray-casting needs the solution of
many single-variable equations. Even if a good equa-
tion solver is available, there are several problems
with this approach, showing how the sample ob-
tained on V depends on the sample of raysR (Fig. 2):

Figure 2: Sampling by ray-casting.

� because there is no a priori criterion for choosing
rays intersecting V , a majority of the rays in R
may not contribute with sample points on V ;
� even when a ray intersects V , the equation solver
may not �nd all intersections, resulting in a partial
sample of V ;
� several rays inRmay intersect V at the same point
(but this is not a problem if the rays in R are
parallel, as in vertical ray-casting).
� a common choice for vertical ray-casting is to use
a uniform mesh to sample the \horizontal plane"
Rn�1, as in parametric sampling. In this case,
the resulting sample on V is then biased against
regions where the tangent space of V is vertical.

In general, it is too hard to relate the size and den-
sity of a sample of rays R to the size and density of
the corresponding sample of V . Nevertheless, ray-
casting is useful for rendering implicit surfaces.

Sampling by continuation

The gradient of h,

rh = (
@h

@x1
; : : : ;

@h

@xn
);

is the Jacobian matrix of h in co-dimension 1. The
gradient is a vector �eld de�ned on the ambient space
Rn, which, at the regular points of h, points in the
direction of local growth of h. Moreover, rh is or-
thogonal to the level sets of h.
In dimension 2, the associated Hamiltonian vec-

tor �eld H(h) = (�@h=@y; @h=@x) is orthogonal to
the gradient rh = (@h=@x; @h=@y), and is therefore
tangent to the level curves of h. Thus, the level sets
of h are the integral curves of H(h), and hence can
be traced by solving an ordinary di�erential equa-
tion (Fig. 3). The integration of ordinary di�erential
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equations related to the gradient is also the main
theme of the physically-based sampling method de-
scribed later in this article.

To cast the computation of a level curve as an
initial value problem, a point on the curve is needed.
Actually, a point on each connected component of
the level curve is needed, if all components are to be
found. In this case, for each such point (x0; y0), the
corresponding connected component is the solution
of the following Cauchy problem:

dx

dt
= �@h

@y

dy

dt
=

@h

@x

x(0) = x0;

y(0) = y0:

Several classical numerical methods exist for solv-
ing initial value problems. Although they are well-
known and easily implemented, these general meth-
ods cannot exploit the fact that the solution of the
Cauchy problem above is a level curve of a smooth
function. One way to use this additional information
to help stabilize the integration is to do a few iter-
ations of Newton's method for the solution of non-
linear equations as a correction after each prediction
[1]: if p is the current point on the curve, then Euler's
prediction of the next point is p+ �H(h)(p), which is
possibly on a di�erent level curve; we use Newton's
method to bring the point p back to the correct level
along the straight line orthogonal to rh(p) (Fig. 3).
The algorithm for this Euler{Newton continuation

method can be written:

p p+ �H(h)(p) Euler predictor

u rh(p) correction direction

while jh(p)j > "

p p � h(p)

hrh(p); uiu Newton corrector

The combination of single-step predictors (such as
Euler's) and Newton correctors provides a robust
method for tracing level curves in several circum-
stances, despite the following restrictions:

� it is only applicable to plane curves;
� it needs starting points on each component;
� it needs special care with closed components.

This continuation method can be extended to
higher-dimensional manifolds by starting with an or-
thogonal complement of the gradient and carefully
integrating along each vector in this complement;
this is the moving frame method [1].

Euler prediction

VNewton correction

gradient

Figure 3: Sampling by continuation.

Sampling by enumeration

Instead of computing an approximation of the level
sets of the exact h, we can compute the exact level
sets of an approximation of h [2]. If this is to be
easier than dealing with the exact h, then the ap-
proximation should be su�ciently simple so that its
exact level sets are easy to compute. This is achieved
by taking a piecewise smooth approximation that is
very simple on each piece; the pieces are the cells of
a cellular decomposition of the ambient space.
The most common approximations are piecewise

linear, obtained by scanning the cellular decompo-
sition and computing the intersection of the level
set with each cell. The need for starting points
is thus avoided and all connected components are
found with no special processing. Methods that solve
equations by scanning cellular decompositions are
called enumeration methods (Fig. 4). A very com-
mon choice for cellular decompositions are simplicial

decompositions in which the cells are simplices (i.e.,
triangles, tetrahedra, etc.).

Figure 4: Sampling by enumeration.
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The simplest decompositions are regular, obtained
by translating and scaling a single prototype cell,
e.g., a unit hypercube aligned with the coordinate
axes. The next level of complexity allows rotations of
the prototype cell, as in regular triangular decompo-
sitions. In principle, the geometry of the cells could
be arbitrary, but if a cell has many facets, then there
are many possibilities for its intersection with the
level set. Moreover, if the cells have complex geome-
try, then the decomposition has a complex topology,
making it harder to coordinate the scan. In prac-
tice, only hypercubical or simplicial cells are used,
arranged in cellular decompositions having well un-
derstood combinatorics [2].

As usual, tolerance is a problem and the size of the
cells must be carefully chosen to avoid missing fea-
tures because of undersampling. However, choosing
a very small cell size greatly increases the number
of cells to be scanned. Thus, regular cellular decom-
positions rapidly increase in complexity under the
demands of precision. One attempt to overcome this
problem is to exploit the geometry of the object and
use adaptive cellular decompositions, which reduce
the total number of cells to be scanned by concen-
trating small cells around features [3,4,5] (see below
for an alternative method).

Enumeration methods can be very expensive be-
cause only a few cells intersect the object, espe-
cially in high co-dimension. Nevertheless, enumer-
ation methods are applicable not only to hypersur-
faces but to submanifolds of all co-dimensions. How-
ever, the higher the co-dimension, the fewer the cells
intersected by the object. This is a serious problem
because, when the cells are simplices, the total num-
ber of cells grows exponentially with the dimension:
a simplicial decomposition of a hypercube in dimen-
sion n needs 
(cn

p
n!) simplices [6].

Independently of how the cells are chosen, the sam-
ple provided by the full scan described above is only
structured locally at each cell; global structuring,
such as the correct glueing of pieces and the iden-
ti�cation of connected components, must be done a

posteriori. This is an additional reason for requiring
simple decomposition topology.

Some variants of the enumeration method perform
global structuring concurrently with sampling by us-
ing continuation: they follow the solution at each of
the intersecting cells and only at those, by using \piv-
oting" procedures to choose the cells to be scanned
[1,2,3]. However, this brings back the need for start-
ing points on each connected component; it is also
necessary to keep track of all visited cells, in order
to identify closed components. Despite these minor
restrictions, such continuation methods are very suc-

cessful, and widely used in practice [1].
Some recent enumeration methods perform adap-

tive enumeration, using small cells only where they
are needed, i.e., near the object. These methods
search for the object by recursively exploring a cel-
lular decomposition of the ambient space. The re-
cursion criterion is \does this cell contain solutions
of h(x) = 0?". If a cell contains solutions, then it is
subdivided into smaller subcells, which are explored
recursively, until they are small enough. The mean-
ing of \small enough" depends on the application:
for rendering, it might mean \smaller than a pixel";
for other applications, it might mean jh(x)j � " for
all vertices x of the cell, where " is a pre-de�ned tol-
erance.
To decide whether a cell contains solutions of

h(x) = 0, an estimate of the image of the cell un-
der h is computed. This estimate is an interval; if
it does not contain zero, then the cell does not con-
tain zeros of h. Interval arithmetic is the natural
technique for computing such estimates [7] (Fig. 5).

Figure 5: Adaptive enumeration with interval arith-
metic; h(x; y) = x2 + y2 + xy � (xy)2=2� 1=4.

The estimates provided by interval arithmetic
are too conservative; in complex expressions having
many coupled sub-expressions, these estimates can
quickly become useless. An alternative to interval
arithmetic, called a�ne arithmetic, has been pro-
posed to overcome this problem [8]. A�ne arithmetic
does handle coupling in expressions and is there-
fore able to provide better estimates. Adaptive enu-
meration of implicit objects using a�ne arithmetic
is a promising technique, specially for rendering [9]
(Fig. 6).
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Figure 6: Adaptive enumeration with a�ne arith-
metic; h(x; y) = x2 + y2 + xy � (xy)2=2� 1=4.

Physically-based sampling

Let V be an object given implicitly in Rn by a func-
tion h. The main theme of the physically-based
method for sampling V that we now describe is the
integration of ordinary di�erential equations related
to the gradient vector �eld rh. Unlike continua-
tion methods, which integrate orthogonal comple-
ments of the gradient, and need starting points cor-
rectly placed on each connected component of V , this
method integrates di�erential equations based on a
modi�ed gradient �eld, and can start at an arbitrary

sample of points on the ambient space: the limit of
the orbit of each point is on V ; together, they provide
the desired sample (Fig. 8).

The modi�ed gradient vector �eld we use is F =
�sign(h)rh, obtained by reversing the sense of rh
when h is positive: this provides a vector �eld point-
ing locally in the direction of V (Fig. 7). The attrac-
tors of F are the set V and the points where h has
either a positive local minimum or a negative local
maximum. Because we are mainly interested in V ,
we call these latter points spurious attractors. Note
that spurious attractors need not be isolated points:
in general, they form a submanifold of V . Although
some sample points can land on spurious attractors,
this does not seriously a�ect the sampling because
we can discard points where h is not zero (of course,
in practice, \not zero" means \above a sampling tol-
erance "").

Figure 7: Modi�ed gradient vector �eld for h(x; y) =
y2 � x3 + x.

Physical interpretations

The �eld F corresponds to the potential function
U = jhj. The points of global minimum potential
energy are exactly those on V . However, the points
where h has a positive local minimum or a negative
local maximumare also local minima of the potential
energy; spurious attractors correspond to particles
that get trapped at these local minima.

The potential function U is not smooth on V ,
where h = 0. Hence, the �eld F is not continuous at
regular points of V ; in fact, the �eld F is continuous
on V only at singular points. One way to avoid this
discontinuity is to consider h2 instead of h: the two
functions have the same set of zeros but the modi�ed
gradient for h2 is �sign(h2)rh2 = �2hrh, which is
continuous everywhere. However, the convergence of
the numerical methods used for integration is slower
for h2 than it is for h because the �eld for h2 de-
creases in magnitude near V , where it is zero.

We consider two physical interpretations for the
vector �eld F : one kinematic and one dynamical.
Both interpretations provide autonomous dynamical
systems that are integrated to simulate Newtonian
mechanics. Discrete models for physical systems are
well suited for computer simulationand have recently
been successfully used in geometric modeling [10,11].

In the kinematic interpretation, the �eld F de-
scribes velocity in terms of position. The equation
of motion corresponding to this interpretation is

dx

dt
+ sign(h)rh = 0:
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In the dynamical interpretation, F is a force �eld
in a dissipative medium. A particle released at rest
into this medium is subjected to forces induced by
F that make it move towards V and then oscillate
around it. Adding friction to the movement guaran-
tees that the particle will tend to equilibrium at a
point on V . The resulting equation of motion for a
unit mass particle is then

d2x

dt2
+ 


dx

dt
+ sign(h)rh = 0;

where 
 is a positive real number representing fric-
tion proportional to the velocity. Friction is impor-
tant because, when 
 = 0, this second-order dynam-
ical system can have additional spurious attractors,
other than the ones described above. Friction also
provides additional control over the sampling pro-
cess. Incerti, Parisi and Zirilli [12] proposed a simi-
lar di�erential equation for �nding zeros of functions
Rn ! Rn; however, they were interested in �nding
any one solution, not many, as required in sampling
for geometric modeling.
By releasing a large set of randomly placed parti-

cles into either �eld and simulating the corresponding
physics until equilibrium, we can generate a \ran-
dom" sample of points on V (Fig. 8).

Motion simulation

The equations of motion for each particle are solved
numerically, using one of the classical integration
methods, such as those of Euler or Runge{Kutta.
However, if particles are to approach V steadily,
adaptive variations of these methods are required,
in which step control is used to avoid divergent oscil-
lations. Such oscillations are mainly due to the dis-
cretizations used in the numerical methods, although
they are also inherent to the physics in the dynam-
ical case. Indeed, in the kinematic case, the orbits
do not cross V and oscillations are the artifact of
numerical methods; in the dynamical case, particles
approach V with non-zero velocity, causing them to
cross V and only then being forced back to it because
the force �eld changes sign. Controlling integration
step size causes such particles to approach V more
carefully each time they cross it, thus guaranteeing
convergence. On the other hand, approaching at-
tractors with non-zero velocity can actually help a
particle to avoid spurious attractors.
Note that the equations of motion are uncoupled

and hence can be solved in parallel. In particular, it
is not necessary to keep all particles in a single time
frame, and we may use a di�erent step size for each
particle. This contrasts with other particle systems
used in computer graphics and animation, where the

joint movement of the particles is important for real-
ism. Therefore, we can implement independent step
control by making the step size of a particle depend
on its position; we do this by halving the step size
every time the particle crosses V . Moreover, we can
stop the simulation of a particle's movement as soon
as it has reached a desired level of equilibrium (mea-
sured, for instance, by the value of h at the position
of the particle or by the value of its step size).

Figure 8: Orbits and �nal sample.

The following algorithm combines a classical
single-step Euler integration with step control as de-
scribed above, to provide a simple and robust method
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for the integration of the equations of motion in the
dynamical case. If x is the position of a particle, v
is its velocity, and � is its current step size, then its
next position, velocity and step size are computed as
follows:

y  h(x) remember current level

v  v + �(F (x)� 
v) Euler predictor

x x+ �v modi�ed Euler predictor

if sign(y) 6= sign(h(x)) check crossing

�  �=2 step control

v  0 re-start from rest

Note that this algorithm is a variant of the strict
Euler method, in the sense that the predicted value
of v is used to predict x, instead of predicting both
in parallel. Step control is done when h changes sign
at two consecutive positions: it is assumed that the
particle has crossed V at this time. As a further
re�nement, we re-start a particle from rest after such
crossings; this allows oscillating particles to approach
V very carefully.

The corresponding algorithm for the kinematic
case is simply:

y  h(x) remember current level

x x+ �F (x) Euler predictor

if sign(y) 6= sign(h(x)) check crossing

�  �=2 step control

The two physical interpretations have complemen-
tary advantages. In the kinematic case, the di�er-
ential equation is simpler, and the convergence is
faster. Moreover, particles approach V orthogonally.
On the other hand, in the dynamical case, spurious
attractors are more easily avoided, making the sam-
pling more robust. Moreover, convergence can be
controlled by modifying the value of friction or by
re-starting particles from rest whenever they seem
not to be converging to equilibrium.

Qualitative distribution of sample

There is no obvious relation between the initial po-
sition of the particles and the �nal distribution of
points on V . Although the dynamical systems are
deterministic, it is di�cult to predict precisely where
a particle will land on V . Nevertheless, the �nal dis-
tribution can be described qualitatively: no portion
of V is consistently missed, and samples concentrate
near high curvature and near spurious attractors.

To justify these claims, we consider the reverse


ow, i.e., the 
ow associated to the vector �eld �F .
This 
ow runs away from V and orthogonally to the
level sets of h (Fig. 9).

Figure 9: Reverse 
ow.

By considering the orbits of points near V along
the reverse 
ow, we can describe where initial sam-
ples land on V . More precisely, take a small " > 0
such that the set fx 2 Rn : jh(x)j < "g is a tubular
neighborhood T of V , and consider an open set U
of T . By moving U through the reverse 
ow, we ob-
tain a continuous family of open sets of the ambient
space, called the open family associated to U . The
main property of this family is that an initial sam-
ple point chosen in any set of the family converges
to a point in U , i.e., to a sample point very near V .
We can now justify the qualitative description given
above:

1. no portion of V is consistently missed.

More precisely, every open set of T is the limit of an
open set of Rn. Indeed, take an open set U of T .
Then, all initial samples in the open family associ-
ated to U land on T . Therefore, if the initial sample
covers the ambient space without gaps, then the �nal
sample covers all of V without gaps.

Although V is completely sampled, the points in
the �nal sample are not evenly distributed: they tend
to concentrate near high curvature and spurious at-
tractors. This can be seen in Fig. 8: more particles
converge to the top and bottom of the closed com-
ponent than to anywhere else, although the initial
sample was random and uniformly distributed.

2. samples concentrate near high curvature.

By de�nition of curvature, the direction of the nor-
mal vector varies faster in regions of high curvature
than in regions of low curvature. Since the normal
vector of V is the gradient of h, the integral curves
of the reverse 
ow spread out more in regions of high
curvature than in regions of low curvature. Now take
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two open sets U andW of T of the same volume in V
(i.e., segments of the same length for curves; regions
of the same area for surfaces). If the curvature of V
inW is higher than in U , then the volume of the sets
in the associated open families grows faster for the
family associated to W. Thus, the probability of an
initial sample point landing on W is higher than the
probability of it landing on U (Fig. 10).

Figure 10: Reverse 
ow on regions of low curvature
(a) and high curvature (b).

3. samples concentrate near spurious attractors.

The spurious attractors of F are the points where
h has either a positive local minimum or a negative
local maximum. On these points, the reverse 
ow
spreads out in all directions. By the preceding ar-
gument, this implies that samples concentrate near
spurious attractors.

Practical issues

The samplingmethod we have described can be sum-
marized in the following algorithm:

� select an initial sample randomly;
� select a sampling tolerance " > 0;
� simulate physical motions;
� stop simulation when jhj < " on the sample;

The main practical issues in this method are the
selection of the initial sample, and the selection of
the control parameters: the sampling tolerance ",
the initial step size �, and the friction coe�cient 
.
If the initial sample is too far away from V , then

the sample after equilibrium might not cover all of
V . We may therefore view the sampling step as a
preliminary search for V . After V is located, we can
then sample it more thoroughly by selecting another
set of initial conditions near V , e.g., by sampling a
bounding box twice as large as the bounding box
of the preliminary sample. A few iterations of this
process are usually enough to locate and sample all
components of V without gaps. Alternatively, we can
perform a coarse enumeration using interval or a�ne
arithmetic to locate regions guaranteed to contain
pieces of V ; the initial sample can then be taken in
these regions.
Although prediction and step control are very sim-

ple, the integration algorithms perform well in prac-
tice. One minor problem is the choice of initial step

size. In our explorative implementation, this choice
is made by trial and error, but it should be possible
to estimate a good step size based on the initial posi-
tion. A naive estimate is the value of h at the point,
but this is not a good estimate if h is 
at near this
point (Fig. 11). Better estimates can be obtained
by taking the gradient of h into account, in a way
similar to Newton's method.

The sampling tolerance " depends on the appli-
cation. The friction coe�cient 
 depends on the
�eld F . They are best controlled interactively.

initial point

solution

h

naive estimate

Figure 11: Naive estimate of initial step size.

Post-processing

To get a good �nal sample with our physically-
based method, we usually need many points, and
this means thousands instead of hundreds, especially
for higher dimensional objects. For instance, the ini-
tial sample in Fig. 8 has 500 points; this many points
are usually enough for curves. On the other hand,
the sample in Fig. 1 has 5000 points; surfaces cannot
usually be adequately sampled with less that 1000
points with our method because of concentration.

Whereas the simulation of uncoupled physical sys-
tems with thousands of particles is not too expensive
in a workstation, the geometric computations needed
for structuring are usually tightly coupled (we have
proposed a structuring method for curves that uses
minimal spanning trees [13,14]). Moreover, the sam-
ples provided by the physically-based method usually
contain many almost coincident points; such concen-
trations occur at regions of high curvature and on
spurious attractors, as mentioned above (Fig. 8). We
are thus faced with the problem of extracting a rep-
resentative sample from the equilibrium sample.

One good way of doing this extraction is to select
a real number � > 0 and collapse all �-cliques: a
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�-clique is a set of points such that the distance be-
tween any two points in the set is at most �. The
obvious brute-force algorithm computes �-cliques in
cubic time. A good approximation is given by the
following bucketing algorithm, which runs in linear
expected time: divide the bounding box of the sam-
ple into regular buckets of size �, and collapse the
points in each bucket. This collapsing can be done
either by electing a representative or by using the
barycenter of the population in each bucket.

Comparison with continuation methods

Although both methods integrate ordinary di�eren-
tial equations, the physically-based samplingmethod
we have described in this section is more robust than
the continuation methods described earlier, in the
following aspects:

� continuation methods need starting points on V ,
whereas arbitrary samples are adequate as initial
conditions for our method;

� single-step Euler integration, without Newton cor-
rection, is adequate for solving motion equations,
because all trajectories lead to V ;

� the method is naturally parallel;
� the method does not need a prede�ned region of
interest because the particles will track V wherever
it is in the ambient space.

Related work

The scattering method brie
y described by Bloomen-
thal and Wyvill [15] also uses particles to sample im-
plicit surfaces de�ned by skeletons. This method is
essentially our kinematic sampling method, except
that their initial samples lie on the skeleton and on
its cross sections. However, they do not describe the
integration algorithm in any detail.

More recently, Witkin and Heckbert described a
di�erent method for sampling and modeling implicit
surfaces with particles [11]. They use a much more
complete physical model that constrains particles to
move on the surface once they reach it, and thus can
perform adaptive sampling by uniformly distribut-
ing particles on the surface using relaxation. Our
method uses a simpler physical model that is faster
to simulate but does not allow particle interaction
and does not provide uniform sample distribution.
On the other hand, particle concentration near high
curvature zones can be exploited for enhancing visual
perception of surface geometry.

A brief description of the sampling method pre-
sented here appeared in a previous paper [16].

Conclusion

We have described a new method for sampling im-
plicit objects that uses equilibrium con�gurations of
simulated physical motions of particles. This method
is in some aspects more robust than classical contin-
uation methods.
Although a sample of points is not a complete geo-

metric model, dense samples have strong perceptual
meaning (Fig. 1), especially if adequate visualization
tools are available. We found that a simple inter-
active \
y-about" tool with depth cueing was very
e�ective for visualizing clouds of three-dimensional
particles generated by our sampling method. Bloo-
menthal and Wyvill report a similar observation [15].
It is easier to use implicit objects in geometric mod-
eling if samples on such objects can be computed fast
for faster feedback. The method we have presented
is an example of such a tool; we think it would be a
useful in an implicit modeler (see also [11,15]).
Much like splines, which are used not only for ap-

proximation, but also for free-form modeling, our
sampling method provides not only an approxima-
tion tool, but also a dynamic modeling tool: by vary-
ing implicit equations or by adding local potential
�elds, it is possible to dynamically control the shape
of the model [15]. After a satisfactory shape is found,
a complete geometric model can then be constructed
by using structuring methods [13,14].
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